(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, x, y) → mod(minus(x, y), y)
if_mod(false, s(x), s(y)) → s(x)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
mod(0, z0) → 0
mod(s(z0), 0) → 0
mod(s(z0), s(z1)) → if_mod(le(z1, z0), s(z0), s(z1))
if_mod(true, z0, z1) → mod(minus(z0, z1), z1)
if_mod(false, s(z0), s(z1)) → s(z0)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, z0, z1) → c8(MOD(minus(z0, z1), z1), MINUS(z0, z1))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, z0, z1) → c8(MOD(minus(z0, z1), z1), MINUS(z0, z1))
K tuples:none
Defined Rule Symbols:
le, minus, mod, if_mod
Defined Pair Symbols:
LE, MINUS, MOD, IF_MOD
Compound Symbols:
c2, c4, c7, c8
(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
MOD(
s(
z0),
s(
z1)) →
c7(
IF_MOD(
le(
z1,
z0),
s(
z0),
s(
z1)),
LE(
z1,
z0)) by
MOD(s(z0), s(0)) → c7(IF_MOD(true, s(z0), s(0)), LE(0, z0))
MOD(s(0), s(s(z0))) → c7(IF_MOD(false, s(0), s(s(z0))), LE(s(z0), 0))
MOD(s(s(z1)), s(s(z0))) → c7(IF_MOD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
mod(0, z0) → 0
mod(s(z0), 0) → 0
mod(s(z0), s(z1)) → if_mod(le(z1, z0), s(z0), s(z1))
if_mod(true, z0, z1) → mod(minus(z0, z1), z1)
if_mod(false, s(z0), s(z1)) → s(z0)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF_MOD(true, z0, z1) → c8(MOD(minus(z0, z1), z1), MINUS(z0, z1))
MOD(s(z0), s(0)) → c7(IF_MOD(true, s(z0), s(0)), LE(0, z0))
MOD(s(0), s(s(z0))) → c7(IF_MOD(false, s(0), s(s(z0))), LE(s(z0), 0))
MOD(s(s(z1)), s(s(z0))) → c7(IF_MOD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF_MOD(true, z0, z1) → c8(MOD(minus(z0, z1), z1), MINUS(z0, z1))
MOD(s(z0), s(0)) → c7(IF_MOD(true, s(z0), s(0)), LE(0, z0))
MOD(s(0), s(s(z0))) → c7(IF_MOD(false, s(0), s(s(z0))), LE(s(z0), 0))
MOD(s(s(z1)), s(s(z0))) → c7(IF_MOD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
K tuples:none
Defined Rule Symbols:
le, minus, mod, if_mod
Defined Pair Symbols:
LE, MINUS, IF_MOD, MOD
Compound Symbols:
c2, c4, c8, c7
(5) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 1 of 6 dangling nodes:
MOD(s(0), s(s(z0))) → c7(IF_MOD(false, s(0), s(s(z0))), LE(s(z0), 0))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
mod(0, z0) → 0
mod(s(z0), 0) → 0
mod(s(z0), s(z1)) → if_mod(le(z1, z0), s(z0), s(z1))
if_mod(true, z0, z1) → mod(minus(z0, z1), z1)
if_mod(false, s(z0), s(z1)) → s(z0)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF_MOD(true, z0, z1) → c8(MOD(minus(z0, z1), z1), MINUS(z0, z1))
MOD(s(z0), s(0)) → c7(IF_MOD(true, s(z0), s(0)), LE(0, z0))
MOD(s(s(z1)), s(s(z0))) → c7(IF_MOD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF_MOD(true, z0, z1) → c8(MOD(minus(z0, z1), z1), MINUS(z0, z1))
MOD(s(z0), s(0)) → c7(IF_MOD(true, s(z0), s(0)), LE(0, z0))
MOD(s(s(z1)), s(s(z0))) → c7(IF_MOD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
K tuples:none
Defined Rule Symbols:
le, minus, mod, if_mod
Defined Pair Symbols:
LE, MINUS, IF_MOD, MOD
Compound Symbols:
c2, c4, c8, c7
(7) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
mod(0, z0) → 0
mod(s(z0), 0) → 0
mod(s(z0), s(z1)) → if_mod(le(z1, z0), s(z0), s(z1))
if_mod(true, z0, z1) → mod(minus(z0, z1), z1)
if_mod(false, s(z0), s(z1)) → s(z0)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF_MOD(true, z0, z1) → c8(MOD(minus(z0, z1), z1), MINUS(z0, z1))
MOD(s(s(z1)), s(s(z0))) → c7(IF_MOD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
MOD(s(z0), s(0)) → c7(IF_MOD(true, s(z0), s(0)))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF_MOD(true, z0, z1) → c8(MOD(minus(z0, z1), z1), MINUS(z0, z1))
MOD(s(s(z1)), s(s(z0))) → c7(IF_MOD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
MOD(s(z0), s(0)) → c7(IF_MOD(true, s(z0), s(0)))
K tuples:none
Defined Rule Symbols:
le, minus, mod, if_mod
Defined Pair Symbols:
LE, MINUS, IF_MOD, MOD
Compound Symbols:
c2, c4, c8, c7, c7
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IF_MOD(
true,
z0,
z1) →
c8(
MOD(
minus(
z0,
z1),
z1),
MINUS(
z0,
z1)) by
IF_MOD(true, z0, 0) → c8(MOD(z0, 0), MINUS(z0, 0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
mod(0, z0) → 0
mod(s(z0), 0) → 0
mod(s(z0), s(z1)) → if_mod(le(z1, z0), s(z0), s(z1))
if_mod(true, z0, z1) → mod(minus(z0, z1), z1)
if_mod(false, s(z0), s(z1)) → s(z0)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(s(z1)), s(s(z0))) → c7(IF_MOD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
MOD(s(z0), s(0)) → c7(IF_MOD(true, s(z0), s(0)))
IF_MOD(true, z0, 0) → c8(MOD(z0, 0), MINUS(z0, 0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(s(z1)), s(s(z0))) → c7(IF_MOD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
MOD(s(z0), s(0)) → c7(IF_MOD(true, s(z0), s(0)))
IF_MOD(true, z0, 0) → c8(MOD(z0, 0), MINUS(z0, 0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
K tuples:none
Defined Rule Symbols:
le, minus, mod, if_mod
Defined Pair Symbols:
LE, MINUS, MOD, IF_MOD
Compound Symbols:
c2, c4, c7, c7, c8
(11) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 1 of 6 dangling nodes:
IF_MOD(true, z0, 0) → c8(MOD(z0, 0), MINUS(z0, 0))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
mod(0, z0) → 0
mod(s(z0), 0) → 0
mod(s(z0), s(z1)) → if_mod(le(z1, z0), s(z0), s(z1))
if_mod(true, z0, z1) → mod(minus(z0, z1), z1)
if_mod(false, s(z0), s(z1)) → s(z0)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(s(z1)), s(s(z0))) → c7(IF_MOD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
MOD(s(z0), s(0)) → c7(IF_MOD(true, s(z0), s(0)))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(s(z1)), s(s(z0))) → c7(IF_MOD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
MOD(s(z0), s(0)) → c7(IF_MOD(true, s(z0), s(0)))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
K tuples:none
Defined Rule Symbols:
le, minus, mod, if_mod
Defined Pair Symbols:
LE, MINUS, MOD, IF_MOD
Compound Symbols:
c2, c4, c7, c7, c8
(13) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
We considered the (Usable) Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
And the Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(s(z1)), s(s(z0))) → c7(IF_MOD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
MOD(s(z0), s(0)) → c7(IF_MOD(true, s(z0), s(0)))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(IF_MOD(x1, x2, x3)) = [2]x2 + [4]x3
POL(LE(x1, x2)) = 0
POL(MINUS(x1, x2)) = [3]
POL(MOD(x1, x2)) = [4] + [2]x1 + [4]x2
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c7(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(false) = 0
POL(le(x1, x2)) = [3] + [4]x1 + [2]x2
POL(minus(x1, x2)) = x1
POL(s(x1)) = [4] + x1
POL(true) = 0
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
mod(0, z0) → 0
mod(s(z0), 0) → 0
mod(s(z0), s(z1)) → if_mod(le(z1, z0), s(z0), s(z1))
if_mod(true, z0, z1) → mod(minus(z0, z1), z1)
if_mod(false, s(z0), s(z1)) → s(z0)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(s(z1)), s(s(z0))) → c7(IF_MOD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
MOD(s(z0), s(0)) → c7(IF_MOD(true, s(z0), s(0)))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(s(z1)), s(s(z0))) → c7(IF_MOD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
MOD(s(z0), s(0)) → c7(IF_MOD(true, s(z0), s(0)))
K tuples:
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
Defined Rule Symbols:
le, minus, mod, if_mod
Defined Pair Symbols:
LE, MINUS, MOD, IF_MOD
Compound Symbols:
c2, c4, c7, c7, c8
(15) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
MOD(s(s(z1)), s(s(z0))) → c7(IF_MOD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
MOD(s(z0), s(0)) → c7(IF_MOD(true, s(z0), s(0)))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
mod(0, z0) → 0
mod(s(z0), 0) → 0
mod(s(z0), s(z1)) → if_mod(le(z1, z0), s(z0), s(z1))
if_mod(true, z0, z1) → mod(minus(z0, z1), z1)
if_mod(false, s(z0), s(z1)) → s(z0)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(s(z1)), s(s(z0))) → c7(IF_MOD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
MOD(s(z0), s(0)) → c7(IF_MOD(true, s(z0), s(0)))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
K tuples:
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
MOD(s(s(z1)), s(s(z0))) → c7(IF_MOD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
MOD(s(z0), s(0)) → c7(IF_MOD(true, s(z0), s(0)))
Defined Rule Symbols:
le, minus, mod, if_mod
Defined Pair Symbols:
LE, MINUS, MOD, IF_MOD
Compound Symbols:
c2, c4, c7, c7, c8
(17) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
LE(s(z0), s(z1)) → c2(LE(z0, z1))
We considered the (Usable) Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
And the Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(s(z1)), s(s(z0))) → c7(IF_MOD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
MOD(s(z0), s(0)) → c7(IF_MOD(true, s(z0), s(0)))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(IF_MOD(x1, x2, x3)) = [2]x1 + x2·x3
POL(LE(x1, x2)) = x1
POL(MINUS(x1, x2)) = 0
POL(MOD(x1, x2)) = [2] + x2 + x1·x2
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c7(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(false) = [2]
POL(le(x1, x2)) = [2]
POL(minus(x1, x2)) = x1
POL(s(x1)) = [2] + x1
POL(true) = [2]
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
mod(0, z0) → 0
mod(s(z0), 0) → 0
mod(s(z0), s(z1)) → if_mod(le(z1, z0), s(z0), s(z1))
if_mod(true, z0, z1) → mod(minus(z0, z1), z1)
if_mod(false, s(z0), s(z1)) → s(z0)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(s(z1)), s(s(z0))) → c7(IF_MOD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
MOD(s(z0), s(0)) → c7(IF_MOD(true, s(z0), s(0)))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
K tuples:
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
MOD(s(s(z1)), s(s(z0))) → c7(IF_MOD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
MOD(s(z0), s(0)) → c7(IF_MOD(true, s(z0), s(0)))
LE(s(z0), s(z1)) → c2(LE(z0, z1))
Defined Rule Symbols:
le, minus, mod, if_mod
Defined Pair Symbols:
LE, MINUS, MOD, IF_MOD
Compound Symbols:
c2, c4, c7, c7, c8
(19) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
We considered the (Usable) Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
And the Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(s(z1)), s(s(z0))) → c7(IF_MOD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
MOD(s(z0), s(0)) → c7(IF_MOD(true, s(z0), s(0)))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(IF_MOD(x1, x2, x3)) = [3] + [2]x2 + [3]x22
POL(LE(x1, x2)) = [1]
POL(MINUS(x1, x2)) = [1] + x1
POL(MOD(x1, x2)) = [2] + [3]x1 + [3]x12
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c7(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(false) = 0
POL(le(x1, x2)) = 0
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
mod(0, z0) → 0
mod(s(z0), 0) → 0
mod(s(z0), s(z1)) → if_mod(le(z1, z0), s(z0), s(z1))
if_mod(true, z0, z1) → mod(minus(z0, z1), z1)
if_mod(false, s(z0), s(z1)) → s(z0)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(s(z1)), s(s(z0))) → c7(IF_MOD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
MOD(s(z0), s(0)) → c7(IF_MOD(true, s(z0), s(0)))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
S tuples:none
K tuples:
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
MOD(s(s(z1)), s(s(z0))) → c7(IF_MOD(le(z0, z1), s(s(z1)), s(s(z0))), LE(s(z0), s(z1)))
MOD(s(z0), s(0)) → c7(IF_MOD(true, s(z0), s(0)))
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
Defined Rule Symbols:
le, minus, mod, if_mod
Defined Pair Symbols:
LE, MINUS, MOD, IF_MOD
Compound Symbols:
c2, c4, c7, c7, c8
(21) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(22) BOUNDS(O(1), O(1))